If it's not what You are looking for type in the equation solver your own equation and let us solve it.
z^2+16z+61=0
a = 1; b = 16; c = +61;
Δ = b2-4ac
Δ = 162-4·1·61
Δ = 12
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12}=\sqrt{4*3}=\sqrt{4}*\sqrt{3}=2\sqrt{3}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-2\sqrt{3}}{2*1}=\frac{-16-2\sqrt{3}}{2} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+2\sqrt{3}}{2*1}=\frac{-16+2\sqrt{3}}{2} $
| 4(x-5)+13=7x-(3x+4)-3 | | f(0)=2*1.5^0=2 | | 0=-16t+48t+4.5 | | 70-(3x+15)=3(x+9)+x | | .5j-1.2=1.2 | | 3=p+8/4 | | 3v^2-128=8v | | 10x-4+17x=7+15x+13 | | 20x-7-18x+4=16x-6-14x+13 | | 24k^2-40k=0 | | -2t^2+5t-8=-t-5 | | x/6-x/7=x/42 | | 4(8x+2)^2+320=0 | | 20x-7-18x+4=16-6-14x+13 | | x/6-x/7=x42 | | 100+10x=20+20x | | 15=3(m-8) | | 3^2x=5 | | 231=3.14(9)h | | 231=3.14(3^2)h | | 3=u-(-1)/2 | | (x+9)^2-2=0 | | 2(x^2-3)=x^2-12 | | 2(j+3)-2=18 | | 5{3x+13}=35 | | 2(x+6)^2+10=-10 | | 6k^2-70=k | | -4(g-19)+-14=-2 | | 3/8x-1/4=1/3 | | 7.4a+14.4=3.2a+86.4 | | 10=2(h-6) | | 7.4a+14.4=3.2a+86+4 |